ORIGINAL ARTICLE
Differences in movement patterns related to anterior cruciate ligament injury risk in elite judokas according to sex: A cross-sectional clinical approach study
 
More details
Hide details
1
Master of Continuing Education in Assessment, Physiotherapy and Rehabilitation in Sport, Department of Physiotherapy, University of Valencia, Valencia, SPAIN
 
2
Department of Physiotherapy, Faculty of Sport Sciences, European University of Madrid, Madrid, SPAIN
 
3
Interdisciplinary Group on Musculoskeletal Disorders, Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, SPAIN
 
4
Physiotherapy and Orofacial Pain Working Group, Sociedad Española de Disfunción Craneomandibular y Dolor Orofacial, Madrid, SPAIN
 
5
Universidad de Alcalá, Facultad de Medicina y Ciencias de la Salud, Departamento de Enfermería y Fisioterapia, Grupo de Investigación en Fisioterapia y Dolor, Alcalá de Henares, SPAIN
 
6
Research Group in Nursing and Health Care, Puerta de Hierro Health Research Institute–Segovia de Arana, Madrid, SPAIN
 
7
Department of Physiotherapy, University of Valencia, Valencia, SPAIN
 
 
Online publication date: 2024-02-26
 
 
Publication date: 2024-03-01
 
 
Electron J Gen Med 2024;21(2):em574
 
KEYWORDS
ABSTRACT
The anterior cruciate ligament (ACL) injury stands as a significant concern in judo, necessitating preventive measures. The primary injury mechanism involves knee collapse in valgus, often linked to deficiencies in core strength, neuromuscular control, external rotators, hip abductors, and limitations in ankle and hip mobility. Sex-wise, the injury is more prevalent in women across various sports. Therefore, in the present study we observed this possible intersexual disparity in the difference of movement patterns among elite judokas according to their sex, in order to identify those athletes with a higher risk of ACL injury. Notably, there were no discernible differences between sexes in the single leg squat test. Both men and women exhibited compromised neuromuscular control in the non-dominant leg. While ankle dorsiflexion and hip external rotation showed no gender disparities, differences in internal rotation were noted. This particular movement restriction may elevate the risk of ACL injury.
 
REFERENCES (39)
1.
Pocecco E, Ruedl G, Stankovic N, et al. Injuries in judo: A systematic literature review including suggestions for prevention. Br J Sports Med. 2013;47(18):1139-43. https://doi.org/10.1136/bjspor... PMid:24255909.
 
2.
Akoto R, Lambert C, Balke M, Bouillon B, Frosch KH, Höher J. Epidemiology of injuries in judo: A cross-sectional survey of severe injuries based on time loss and reduction in sporting level. Br J Sports Med. 2018;52(17):1109-15. https://doi.org/10.1136/bjspor... PMid:28446454.
 
3.
von Gerhardt AL, Vriend I, Verhagen E, Tol JL, Kerkhoffs GMMJ, Reurink G. Systematic development of an injury prevention programme for judo athletes: The IPPON intervention. BMJ Open Sport Exerc Med. 2020;6(1): e000791. https://doi.org/10.1136/bmjsem... PMid:33033621 PMCid:PMC7534731.
 
4.
Sánchez Romero EA, Lim T, Alonso Pérez JL, Castaldo M, Martínez Lozano P, Villafañe JH. Identifying clinical and MRI characteristics associated with quality of life in patients with anterior cruciate ligament injury: Prognostic factors for long-term. Int J Environ Res Public Health. 2021; 18(23):12845. https://doi.org/10.3390/ijerph... PMid:34886570 PMCid:PMC8657193.
 
5.
Koshida S, Deguchi T, Miyashita K, Iwai K, Urabe Y. The common mechanisms of anterior cruciate ligament injuries in judo: A retrospective analysis. Br J Sports Med. 2010; 44(12):856-61. https://doi.org/10.1136/bjsm.2... PMid:19042919.
 
6.
Larwa J, Stoy C, Chafetz RS, Boniello M, Franklin C. Stiff landings, core stability, and dynamic knee valgus: A systematic review on documented anterior cruciate ligament ruptures in male and female athletes. Int J Environ Res Public Health. 2021;18(7):3826. https://doi.org/10.3390/ijerph... PMid:33917488 PMCid:PMC8038785.
 
7.
Hewett TE, Myer GD, Ford KR, Paterno MV, Quatman CE. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J Orthop Res. 2016;34(11):1843-55. https://doi.org/10.1002/jor.23... PMid:27612195 PMCid:PMC5505503.
 
8.
Mehl J, Diermeier T, Herbst E, et al. Evidence-based concepts for prevention of knee and ACL injuries. 2017 guidelines of the ligament committee of the German Knee Society (DKG). Arch Orthop Trauma Surg. 2018;138(1):51-61. https://doi.org/10.1007/s00402... PMid:28983841.
 
9.
Wilczyński B, Zorena K, Ślęzak D. Dynamic knee valgus in single-leg movement tasks. Potentially modifiable factors and exercise training options. A literature review. Int J Environ Res Public Health. 2020;17(21):8208. https://doi.org/10.3390/ijerph... PMid:33172101 PMCid:PMC7664395.
 
10.
Jeong J, Choi DH, Shin CS. Core strength training can alter neuromuscular and biomechanical risk factors for anterior cruciate ligament injury. Am J Sports Med. 2021;49(1):183-92. https://doi.org/10.1177/036354... PMid:33381989.
 
11.
LaBella CR, Hennrikus W, Hewett TE, Council on Sports Medicine and Fitness, and Section on Orthopaedics. Anterior cruciate ligament injuries: Diagnosis, treatment, and prevention. Pediatrics. 2014;133(5):e1437-50. https://doi.org/10.1542/peds.2... PMid:24777218.
 
12.
Hewett TE, Ford KR, Hoogenboom BJ, Myer GD. Understanding and preventing acl injuries: current biomechanical and epidemiologic considerations - update 2010. N Am J Sports Phys Ther. 2010;5(4):234-51.
 
13.
Hewett TE, Ford KR, Hoogenboom BJ, Myer GD. Understanding and preventing acl injuries: current biomechanical and epidemiologic considerations - update 2010. N Am J Sports Phys Ther. 2010 Dec;5(4):234-51. PMid:21655382 PMCid:PMC3096145.
 
14.
Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. The effects of core proprioception on knee injury: A prospective biomechanical-epidemiological study. Am J Sports Med. 2007;35(3):368-73. https://doi.org/10.1177/036354... PMid:17267766.
 
15.
Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: Prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):1123-30. https://doi.org/10.1177/036354... PMid:17468378.
 
16.
Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am J Sports Med. 2005;33(4):492-501. https://doi.org/10.1177/036354... PMid:15722287.
 
17.
Wahlstedt C, Rasmussen-Barr E. Anterior cruciate ligament injury and ankle dorsiflexion. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3202-7. https://doi.org/10.1007/s00167... PMid:24923690.
 
18.
Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. Am J Sports Med. 1999;27(6):699-706. https://doi.org/10.1177/036354... PMid:10569353.
 
19.
Sasaki S, Tsuda E, Yamamoto Y, et al. Core-muscle training and neuromuscular control of the lower limb and trunk. J Athl Train. 2019;54(9):959-69. https://doi.org/10.4085/1062-6... PMid:31386583 PMCid:PMC6795098.
 
20.
Dargo L, Robinson KJ, Games KE. Prevention of knee and anterior cruciate ligament injuries through the use of neuro-muscular and proprioceptive training: An evidence-based review. J Athl Train. 2017;52(12):1171-2. https://doi.org/10.4085/1062-6... PMid:29172648 PMCid:PMC5759702.
 
21.
Gomes JLE, de Castro JV, Becker R. Decreased hip range of motion and noncontact injuries of the anterior cruciate ligament. Arthroscopy. 2008;24(9):1034-7. https://doi.org/10.1016/j.arth... PMid:18760211.
 
22.
VandenBerg C, Crawford EA, Sibilsky Enselman E, Robbins CB, Wojtys EM, Bedi A. Restricted hip rotation is correlated with an increased risk for anterior cruciate ligament injury. Arthroscopy. 2017;33(2):317-25. https://doi.org/10.1016/j.arth... PMid:27840056.
 
23.
Powden CJ, Hoch JM, Hoch MC. Reliability and minimal detectable change of the weight-bearing lunge test: A systematic review. Man Ther. 2015;20(4):524-32. https://doi.org/10.1016/j.math... PMid:25704110.
 
24.
von Gerhardt AL, Reurink G, Kerkhoffs GMMJ, et al. Effectiveness of a judo-specific injury prevention programme: A randomised controlled trial in recreational judo athletes. Br J Sports Med. 2023;57(8):450-6. https://doi.org/10.1136/bjspor... PMid:36717214.
 
25.
Della Villa F, Buckthorpe M, Grassi A, et al. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br J Sports Med. 2020;54:1423-32. https://doi.org/10.1136/bjspor... PMid:32561515.
 
26.
Zeller BL, McCrory JL, Ben Kibler W, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31(3):449-56. https://doi.org/10.1177/036354... PMid:12750142.
 
27.
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. J Clin Epidemiol. 2008;11:260-5. https://doi.org/10.1016/j.jcli... PMid:18313558.
 
28.
Baldazzi A, Molinaro L, Taborri J, Margheritini F, Rossi S, Bergamini E. Reliability of wearable sensors-based parameters for the assessment of knee stability. PLoS ONE. 2022;17(9):e0274817. https://doi.org/10.1371/journa... PMid:36137143 PMCid:PMC9499276.
 
29.
Ugalde V, Brockman C, Bailowitz Z, Pollard CD. Single leg squat test and its relationship to dynamic knee valgus and injury risk screening. PM R. 2015;7(3):229-35. https://doi.org/10.1016/j.pmrj... PMid:25111946.
 
30.
Ressman J, Grooten WJA, Rasmussen-Barr E. Visual assessment of movement quality: A study on intra- and inter-rater reliability of a multi-segmental single leg squat test. BMC Sports Sci Med Rehabil. 20218;13(1):66. https://doi.org/10.1186/s13102... PMid:34099021 PMCid:PMC8186063.
 
31.
Simondson D, Brock K, Cotton S. Reliability and smallest real difference of the ankle lunge test post ankle fracture. Man Ther. 2012;17(1):34-8. https://doi.org/10.1016/j.math... PMid:21959254.
 
32.
Shi X, Ganderton C, Tirosh O, Adams R, Ei-Ansary D, Han J. Test-retest reliability of ankle range of motion, proprioception, and balance for symptom and gender effects in individuals with chronic ankle instability. Musculoskelet Sci Pract. 202316;66:102809. https://doi.org/10.1016/j.msks... PMid:37354602.
 
33.
Lambert C, Guenther D, Schütz L-M, et al. Psychological readiness is related to return to sport in judo injuries: A cross-sectional study. BMC Sports Sci Med Rehabil. 2023;15(1):20. https://doi.org/10.1186/s13102... PMid:36797731 PMCid:PMC9933272.
 
34.
Nakano N, Bartlett J, Khanduja V. Is restricted hip movement a risk factor for anterior cruciate ligament injury? J Orthop Surg (Hong Kong). 2018;26(3):230949901879952. https://doi.org/10.1177/230949... PMid:30253690.
 
35.
Pappas E, Shiyko MP, Ford KR, Myer GD, Hewett TE. Biomechanical deficit profiles associated with ACL injury risk in female athletes. Med Sci Sports Exerc. 2016;48(1): 107-13. https://doi.org/10.1249/MSS.00... PMid:26258858 PMCid:PMC4681676.
 
36.
Prill R, Michel S, Schulz R, Coriolano HJ. Body composition and strength parameters in elite judo athletes 5 years after anterior cruciate ligament reconstruction. Int J Sports Med. 2019;40(01):38-42. https://doi.org/10.1055/a-0787... PMid:30481831.
 
37.
Martin RL, Enseki KR, Draovitch P, Trapuzzano T, Philippon MJ. Acetabular labral tears of the hip: Examination and diagnostic challenges. J Orthop Sports Phys Ther. 2006; 36(7):503-15. https://doi.org/10.2519/jospt.... PMid:16881467.
 
38.
Henriques IAD, Lattari E, Torres G, et al. Can transcranial direct current stimulation improve range of motion and modulate pain perception in healthy individuals? Neurosci Lett. 2019;707:134311. https://doi.org/10.1016/j.neul... PMid:31158433.
 
39.
Mizuno T, Aramaki Y. Cathodal transcranial direct current stimulation over the Cz increases joint flexibility. Neurosci Res. 2017;114:55-61. https://doi.org/10.1016/j.neur... PMid:27576117.
 
eISSN:2516-3507
Journals System - logo
Scroll to top