ORIGINAL ARTICLE
Belinostat effects on expression of RBM5 tumor suppressor gene and inhibits prostate cancer cell line (PC3) proliferation
 
More details
Hide details
1
Department of Anatomical Sciences, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
 
2
Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
 
 
Online publication date: 2018-03-01
 
 
Publication date: 2018-03-01
 
 
Electron J Gen Med 2018;15(3):em24
 
KEYWORDS
ABSTRACT
Prostate cancer as the second most prevalent cancer and the sixth most common cause of cancer death among men appears with increasing mortality incidence rate amongst Asian population. Although, surgery, chemotherapy and radiotherapy are investigated as potent therapeutic strategies for the treatment of localized prostate cancer, advanced prostate cancer does not completely respond to these methods. According to the ambiguous molecular mechanism of belinostat, the present study was conducted to determine the effect of belinostat on an advanced prostate cancer cell line (PC3). The Flowcytometry assay was done in a triplicate repeat to measure the viability and the percent of apoptotic cells. Real-time PCR was done to evaluate mRNA expression changes in RBM5 tumor suppressor gene and growth inhibition of PC3. The results indicated that PC3 that treated with 1μM belinostat showed significant increase in expression of RBM5 mRNA and also a significant increase in apoptosis. In conclusion, this study demonstrated that belinostat increases RBM5 expression and this may be responsible for some part of belinostat apoptosis inducing effect.
 
REFERENCES (49)
1.
Nieto M, Finn S, Loda M, Hahn WC: Prostate cancer: Re-focusing on androgen receptor signaling. The international journal of biochemistry & cell biology 2007;39:1562-1568. https://doi.org/10.1016/j.bioc... PMid:17321194 PMCid:PMC2000831.
 
2.
Crawford ED: Epidemiology of prostate cancer. Urology 2003;62:3-12. https://doi.org/10.1016/j.urol....
 
3.
Baade PD, Youlden DR, Krnjacki LJ: International epidemiology of prostate cancer: Geographical distribution and secular trends. Molecular nutrition & food research 2009;53:171-184. https://doi.org/10.1002/mnfr.2... PMid:19101947.
 
4.
Kosova F, Temeltaş G, Arı Z, Lekili M: Possible relations between oxidative damage and apoptosis in benign prostate hyperplasia and prostate cancer patients. Tumor Biology 2014;35:4295-4299. https://doi.org/10.1007/s13277... PMid:24375255.
 
5.
Klein EA, Kupelian PA: Localized prostate cancer: Radiation or surgery? Urologic Clinics of North America 2003;30:315-330. https://doi.org/10.1016/S0094-....
 
6.
Zhao L, Li R, Shao C, Li P, Liu J, Wang K: 3p21. 3 tumor suppressor gene rbm5 inhibits growth of human prostate cancer pc-3 cells through apoptosis. World journal of surgical oncology 2012;10:1. https://doi.org/10.1186/1477-7... PMid:23158838 PMCid:PMC3544648.
 
7.
Kok K, Naylor SL, Buys C: Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Advances in cancer research 1997;71:28-93. https://doi.org/10.1016/S0065-....
 
8.
Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, Fondon JW, Garner HR, McKay B, Latif F: High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Research 2000;60:1949-1960. PMid:10766185.
 
9.
Sutherland LC, Wang K, Robinson AG: Rbm5 as a putative tumor suppressor gene for lung cancer. Journal of Thoracic Oncology 2010;5:294-298. https://doi.org/10.1097/JTO.0b... PMid:20186023.
 
10.
Maarabouni MM, Williams GT: The antiapoptotic rbm5/luca-15/h37 gene and its role in apoptosis and human cancer: Research update. The Scientific World Journal 2006;6:1705-1712. https://doi.org/10.1100/tsw.20... PMid:17195868 PMCid:PMC1825760.
 
11.
Mourtada‐Maarabouni M, Sutherland LC, Meredith JM, Williams GT: Simultaneous acceleration of the cell cycle and suppression of apoptosis by splice variant delta‐6 of the candidate tumour suppressor luca‐15/rbm5. Genes to Cells 2003;8:109-119. https://doi.org/10.1046/j.1365....
 
12.
Welling DB, Lasak JM, Akhmametyeva E, Ghaheri B, Chang L-S: Cdna microarray analysis of vestibular schwannomas. Otology & neurotology 2002;23:736-748. https://doi.org/10.1097/001294....
 
13.
Edamatsu H, Kaziro Y, Itoh H: Luca15, a putative tumour suppressor gene encoding an rna‐binding nuclear protein, is down‐regulated in ras‐transformed rat‐1 cells. Genes to Cells 2000;5:849-858. https://doi.org/10.1046/j.1365....
 
14.
Oh JJ, West AR, Fishbein MC, Slamon DJ: A candidate tumor suppressor gene, h37, from the human lung cancer tumor suppressor locus 3p21. 3. Cancer research 2002;62:3207-3213 PMid:12036935.
 
15.
Liang H, Zhang J, Shao C, Zhao L, Xu W, Sutherland LC, Wang K: Differential expression of rbm5, egfr and kras mrna and protein in non-small cell lung cancer tissues. Journal of Experimental & Clinical Cancer Research 2012;31:1. https://doi.org/10.1186/1756-9... PMid:22537942 PMCid:PMC3403968.
 
16.
Oh JJ, Razfar A, Delgado I, Reed RA, Malkina A, Boctor B, Slamon DJ: 3p21. 3 tumor suppressor gene h37/luca15/rbm5 inhibits growth of human lung cancer cells through cell cycle arrest and apoptosis. Cancer research 2006;66:3419-3427. https://doi.org/10.1158/0008-5... PMid:16585163.
 
17.
Li P, Wang K, Zhang J, Zhao L, Liang H, Shao C, Sutherland LC: The 3p21. 3 tumor suppressor rbm5 resensitizes cisplatin-resistant human non-small cell lung cancer cells to cisplatin. Cancer epidemiology 2012;36:481-489. https://doi.org/10.1016/j.cane... PMid:22609235.
 
18.
Rintala‐Maki ND, Abrasonis V, Burd M, Sutherland LC: Genetic instability of rbm5/luca‐15/h37 in mcf‐7 breast carcinoma sublines may affect susceptibility to apoptosis. Cell biochemistry and function 2004;22:307-313. https://doi.org/10.1002/cbf.11... PMid:15338470.
 
19.
Senchenko VN, Liu J, Loginov W, Bazov I, Angeloni D, Seryogin Y, Ermilova V, Kazubskaya T, Garkavtseva R, Zabarovska VI: Discovery of frequent homozygous deletions in chromosome 3p21. 3 luca and ap20 regions in renal, lung and breast carcinomas. Oncogene 2004;23:5719-5728. https://doi.org/10.1038/sj.onc... PMid:15208675.
 
20.
Rintala-Maki N, Sutherland L: Luca-15/rbm5, a putative tumour suppressor, enhances multiple receptor-initiated death signals. Apoptosis 2004;9:475-484. https://doi.org/10.1023/B:APPT... PMid:15192330.
 
21.
Sutherland LC, Edwards SE, Cable HC, Poirier GG, Miller BA, Cooper CS, Williams GT: Luca-15-encoded sequence variants regulate cd95-mediated apoptosis. Oncogene 2000;19:3774-3781. https://doi.org/10.1038/sj.onc... PMid:10949932.
 
22.
Buckley MT, Yoon J, Yee H, Chiriboga L, Liebes L, Ara G, Qian X, Bajorin DF, Sun T-T, Wu X-R: The histone deacetylase inhibitor belinostat (pxd101) suppresses bladder cancer cell growth in vitro and in vivo. J Transl Med 2007;5:10.1186.
 
23.
Plumb JA, Finn PW, Williams RJ, Bandara MJ, Romero MR, Watkins CJ, La Thangue NB, Brown R: Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor pxd101. Molecular cancer therapeutics 2003;2:721-728. PMid:12939461.
 
24.
Carducci MA, Gilbert J, Bowling MK, Noe D, Eisenberger MA, Sinibaldi V, Zabelina Y, Chen T-l, Grochow LB, Donehower RC: A phase i clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clinical Cancer Research 2001;7:3047-3055. PMid:11595694.
 
25.
Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK: Histone deacetylases and cancer: Causes and therapies. Nature Reviews Cancer 2001;1:194-202. https://doi.org/10.1038/351060... PMid:11902574.
 
26.
Tumber A, Collins LS, Petersen KD, Thougaard A, Christiansen SJ, Dejligbjerg M, Jensen PB, Sehested M, Ritchie JW: The histone deacetylase inhibitor pxd101 synergises with 5-fluorouracil to inhibit colon cancer cell growth in vitro and in vivo. Cancer chemotherapy and pharmacology 2007;60:275-283. https://doi.org/10.1007/s00280... PMid:17124594.
 
27.
Qian X, LaRochelle WJ, Ara G, Wu F, Petersen KD, Thougaard A, Sehested M, Lichenstein HS, Jeffers M: Activity of pxd101, a histone deacetylase inhibitor, in preclinical ovarian cancer studies. Molecular cancer therapeutics 2006;5:2086-2095. https://doi.org/10.1158/1535-7... PMid:16928830.
 
28.
Bookstein R, Shew J-Y, Chen P-L, Scully P, Lee W-H: Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated rb gene. Science 1990;247:712-715. https://doi.org/10.1126/scienc....
 
29.
Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL: The pten/mmac1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/akt pathway. Proceedings of the National Academy of Sciences 1998;95:15587-15591. https://doi.org/10.1073/pnas.9....
 
30.
van Bokhoven A, Varella‐Garcia M, Korch C, Johannes WU, Smith EE, Miller HL, Nordeen SK, Miller GJ, Lucia MS: Molecular characterization of human prostate carcinoma cell lines. The Prostate 2003;57:205-225. https://doi.org/10.1002/pros.1... PMid:14518029.
 
31.
Uzgare AR, Isaacs JT: Enhanced redundancy in akt and mitogen-activated protein kinase-induced survival of malignant versus normal prostate epithelial cells. Cancer Research 2004;64:6190-6199. https://doi.org/10.1158/0008-5... PMid:15342404.
 
32.
Denmeade SR, Sokoll LJ, Dalrymple S, Rosen DM, Gady AM, Bruzek D, Ricklis RM, Isaacs JT: Dissociation between androgen responsiveness for malignant growth vs. Expression of prostate specific differentiation markers psa, hk2, and psma in human prostate cancer models. The Prostate 2003;54:249-257. https://doi.org/10.1002/pros.1... PMid:12539223.
 
33.
Frønsdal K, Saatcioglu F: Histone deacetylase inhibitors differentially mediate apoptosis in prostate cancer cells. The Prostate 2005;62:299-306. https://doi.org/10.1002/pros.2... PMid:15389787.
 
34.
Kortenhorst MS, Wissing MD, Rodriguez R, Kachhap SK, Jans JJ, Van der Groep P, Verheul HM, Gupta A, Aiyetan PO, van der Wall E: Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors. Epigenetics 2013;8:907-920. https://doi.org/10.4161/epi.25... PMid:23880963 PMCid:PMC3883768.
 
35.
Kortenhorst M, Marchionni L, Zahurak M, Shabbeer S, Kachhap S, Parmigiani G, Verheul H, Carducci M: Gene set enrichment analysis of prostate cancer cells to study histone deacetylase inhibitor resistance. Cancer Research 2007;67:4416-4416.
 
36.
Laurenzana A, Balliu M, Cellai C, Romanelli MN, Paoletti F: Effectiveness of the histone deacetylase inhibitor (s)-2 against lncap and pc3 human prostate cancer cells. PloS one 2013;8:e58267. https://doi.org/10.1371/journa... PMid:23469273 PMCid:PMC3587597.
 
37.
Dehm SM, Tindall DJ: Molecular regulation of androgen action in prostate cancer. Journal of cellular biochemistry 2006;99:333-344. https://doi.org/10.1002/jcb.20... PMid:16518832.
 
38.
Rephaeli A, Blank‐Porat D, Tarasenko N, Entin‐Meer M, Levovich I, Cutts SM, Phillips DR, Malik Z, Nudelman A: In vivo and in vitro antitumor activity of butyroyloxymethyl‐diethyl phosphate (an‐7), a histone deacetylase inhibitor, in human prostate cancer. International journal of cancer 2005;116:226-235 https://doi.org/10.1002/ijc.21... PMid:15800932.
 
39.
Xia Q, Sung J, Chowdhury W, Chen C-l, Höti N, Shabbeer S, Carducci M, Rodriguez R: Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo. Cancer Research 2006;66:7237-7244. https://doi.org/10.1158/0008-5... PMid:16849572.
 
40.
Gravina GL, Marampon F, Giusti I, Carosa E, Di Sante S, Ricevuto E, Dolo V, Tombolini V, Jannini EA, Festuccia C: Differential effects of pxd101 (belinostat) on androgen-dependent and androgen-independent prostate cancer models. International journal of oncology 2012;40:711-720 PMid:22134754.
 
41.
Kotlajich MV, Hertel KJ: Death by splicing: Tumor suppressor rbm5 freezes splice-site pairing. Molecular cell 2008;32:162-164. https://doi.org/10.1016/j.molc... PMid:18951082.
 
42.
Farina B, Fattorusso R, Pellecchia M: Targeting zinc finger domains with small molecules: Solution structure and binding studies of the ranbp2‐type zinc finger of rbm5. Chembiochem 2011;12:2837-2845. https://doi.org/10.1002/cbic.2... PMid:22162216 PMCid:PMC3408030.
 
43.
Shao C, Zhao L, Wang K, Xu W, Zhang J, Yang B: The tumor suppressor gene rbm5 inhibits lung adenocarcinoma cell growth and induces apoptosis. World journal of surgical oncology 2012;10:1. https://doi.org/10.1186/1477-7... PMid:22866867 PMCid:PMC3502321.
 
44.
Zhang L, Zhang Q, Yang Y, Wu C: The rna recognition motif domains of rbm5 are required for rna binding and cancer cell proliferation inhibition. Biochemical and biophysical research communications 2014;444:445-450. https://doi.org/10.1016/j.bbrc... PMid:24486491.
 
45.
Häcker S, Dittrich A, Mohr A, Schweitzer T, Rutkowski S, Krauss J, Debatin K, Fulda S: Histone deacetylase inhibitors cooperate with ifn-γ to restore caspase-8 expression and overcome trail resistance in cancers with silencing of caspase-8. Oncogene 2009;28:3097-3110. https://doi.org/10.1038/onc.20... PMid:19597472.
 
46.
Gleave ME, Sato N, Sadar M, Yago V, Bruchovsky N, Sullivan L: Butyrate analogue, isobutyramide, inhibits tumor growth and time to androgen‐independent progression in the human prostate lncap tumor model. Journal of cellular biochemistry 1998;69:271-281. https://doi.org/10.1002/(SICI)...<271::AID-JCB5>3.0.CO;2-O.
 
47.
Yang B, Yu D, Liu J, Yang K, Wu G, Liu H: Antitumor activity of saha, a novel histone deacetylase inhibitor, against murine b cell lymphoma a20 cells in vitro and in vivo. Tumor Biology 2015;36:5051-5061. https://doi.org/10.1007/s13277... PMid:25649979.
 
48.
Zhijun H, Shusheng W, Han M, Jianping L, Li-sen Q, Dechun L: Pre-clinical characterization of 4sc-202, a novel class i hdac inhibitor, against colorectal cancer cells. Tumor Biology 2016:1-11. https://doi.org/10.1007/s13277....
 
49.
Thelen P, Schweyer S, Hemmerlein B, Wuttke W, Seseke F, Ringert R-H: Expressional changes after histone deacetylase inhibition by valproic acid in lncap human prostate cancer cells. International journal of oncology 2004;24:25-31. https://doi.org/10.3892/ijo.24....
 
eISSN:2516-3507
Journals System - logo
Scroll to top