New and more effective application assays for hemostatic disorder assessment: A systematic review
More details
Hide details
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, SAUDI ARABIA
Online publication date: 2023-08-11
Publication date: 2023-11-01
Electron J Gen Med 2023;20(6):em538
Hemostasis research lacked novel platform assays for hemostatic disorder diagnosis. The current review study’s goal is to compare various assays for evaluating the novel hemostatic techniques used in the diagnosis of coagulation disturbances and to highlight each method’s strongest and weakest points.

The PRISMA guidelines and the recommendations for observational studies in epidemiology were both followed in the current systematic review. The PRISMA-compliant electronic databases (PubMed), a novel platform for evaluating hemostasis, were searched using the keywords. The electronic databases (PubMed), a cutting-edge platform to assess hemostasis, were searched using the keywords. Articles published between December 2016 and December 2021 were only included in searches; original articles were written in English. In order to assess hemostasis studies, we gathered bibliographies of abstracts that were published on the new and more effective application assays for assessments of hemostasis disorders.

Following the removal of duplicates, articles were determined by examining the titles and abstracts. Disagreements were resolved through consensus and the application of novel hemostatic analysis methods. Then independently reviewed the relevant studies of the recognized records (n=503), excluding duplicates (n=9) and irrelevant studies (n=249). The remaining 254 studies were read in their entirety, the data from the seven included studies had been extracted.

When expressed as an anticoagulant for the in vivo assessment of on the complement system, nanotechnology-based study was more effective in some laboratory tests, and flow cytometer evaluation could be a promising platform approach for use in hemostasis management.

Fadeel, B. Understanding the immunological interactions of engineered nanomaterials: Role of the bio-corona. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(6): e1798. PMid:36416023 PMCid:PMC9787869.
Skewis LR, Lebedeva T, Papkov V, et al. T2 magnetic resonance: A diagnostic platform for studying integrated hemostasis in whole blood--proof of concept. Clin Chem. 2014; 60(9):1174-82. PMid:24958814.
Warkentin TE. Ischemic limb gangrene with pulses. N Engl J Med. 2015;373(7):642-55. PMid:26267624.
Warkentin TE, Greinacher A. Laboratory testing for heparin-induced thrombocytopenia. In: Warkentin TE, Greinacher A, editors. Heparin-induced thrombocytopenia. 5th ed. Boca Raton, FL: CRC Press; 2013. p. 272-314.
Gresele P, Subcommittee on Platelet Physiology of the International Society on Thrombosis and Hemostasis. Diagnosis of inherited platelet function disorders: Guidance from the SSC of the ISTH. J Thromb Haemost. 2015;13(2):314-22. PMid:25403439.
Ramström AS, Fagerberga IH, Lindahl TL. A flow cytometric assay for the study of dense granule storage and release in human platelets. Platelets. 1999;10(2-3):153-8. PMid:16801086.
Manukjan G, Eilenberger J, Andres O, Schambeck C, Eber S, Schulze H. Functional classification of paediatric patients with non-syndromic delta-storage pool deficiency. Hamostaseologie. 2019;39(4): 383-91. PMid:30463093.
Brunet JG, Iyer JK, Badin MS, et al. Electron microscopy examination of platelet whole mount preparations to quantitate platelet dense granule numbers: Implications for diagnosing suspected platelet function disorders due to dense granule deficiency. Int J Lab Hematol. 2018;40(4): 400-7. PMid:29508516.
William TG, Meera R, Edward PC, et al. A morphometric analysis of platelet dense granules of patients with unexplained bleeding: A new entity of delta-microgranular storage pool deficiency. J Clin Med. 2020;9(6):1734. PMid:32512725 PMCid:PMC7356033.
Israels SJ, Kahr WHA, Blanchette VS, Luban NLC, Rivard GE, Rand ML. Platelet disorders in children: A diagnostic approach. Pediatr Blood Cancer. 2011;56(6):975-83. PMid:21294245.
Zhang Y, Cui P, Wang Y, Zhang, S. Identification and bioactivity analysis of a newly identified defensin from the oyster magallana gigas. Dev Comp Immunol. 2018;85:177-87. PMid:29733023.
Hu Z, Yang P, Zhou C, Li S, Hong P. Marine collagen peptides from the skin of Nile tilapia (oreochromis niloticus): Characterization and wound healing evaluation. Mar Drugs. 2017;15(4):102. PMid:28358307 PMCid:PMC5408248.
Ouyang Q, Hou T, Li C, et al. Construction of a composite sponge containing tilapia peptides and chitosan with improved hemostatic performance. Int J Biol Macromol. 2019;139:719-29. PMid:31356953.
Wang Q, Li W, He Y, et al. Novel antioxidative peptides from the protein hydrolysate of oysters (crassostrea talienwhanensis). Food Chem. 2014;145:991-6. PMid:24128574.
Zhang Z, Zhou F, Liu X, Zhao M. Particulate nanocomposite from oyster (crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chem. 2018;258:269-77. PMid:29655733.
Xu D, Lin F, Zhu XY, et al. [Immunomodulatory effect of oyster peptide on immunosuppressed mice]. Beijing Da Xue Xue Bao Yi Xue Ban. 2016;48(3):392-7.
Asha KK, Remya Kumari KR, Ashok Kumar K, Chatterjee NS, Anandan R, Mathew S. Sequence determination of an antioxidant peptide obtained by enzymatic hydrolysis of oyster crassostrea madrasensis (preston). Int J Pept Res Ther. 2016;22:421-33.
Raftery RM, Woods B, Marques ALP, et al. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomater. 2016;43:160-9. PMid:27402181.
Hickman DA, Pawlowski CL, Sekhon UDS, Marks J, Gupta AS. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv Mater. 2018;30(4):10.1002/adma.201700859. PMid:29164804 PMCid:PMC5831165.
Kim DK, Jeong J, Shin SD, et al. Association between prehospital field to emergency department delta shock index and in-hospital mortality in patients with torso and extremity trauma: A multinational, observational study. Plos One. 2021;16(10):e0258811. PMid:34695147 PMCid:PMC8544870.
Gresele P, Harrison P, Bury L, et al. Diagnosis of suspected inherited platelet function disorders: Results of a worldwide survey. J Thromb Haemost. 2014;12(9):1562-9. PMid:24976115.
Schafer AI. Bleeding and thrombosis in the myeloproliferative disorders. Blood. 1984;64(1):1-12. PMid:6375757.
George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: The spectrum of clinical disease. Blood. 1990;75(7):1383-95. PMid:2180491.
George JN, Shattil SJ. The clinical importance of acquired abnormalities of platelet function. N Engl J Med. 1991;324(1):27-39. PMid:1984161.
Hayward CPM. How I investigate for bleeding disorders. Int J Lab Hematol. 2018;40(Suppl 1):6-14. PMid:29741250.
Hayward CPM, MoffatKA, Brunet J, et al. Update on diagnostic testing for platelet function disorders: What is practical and useful? Int J Lab Hematol. 2019;41 (Suppl 1):26-32. PMid:31069975.
Femia EA, Scavone M, Lecchi A, et al. Effect of platelet count on platelet aggregation measured with impedance aggregometry (multiplate analyzer) and with light transmission aggregometry. J Thromb Haemost. 2013;11(12):2193-6. PMid:24148217.
Paniccia R, Priora R, Liotta AA, et al. Platelet function tests: A comparative review. Vasc Health Risk Manag. 2015;11:133-48. PMid:25733843 PMCid:PMC4340464.
Michelson AD. Platelet function testing in cardiovascular diseases. Circulation. 2004;110(19):e489-93.
Christie D, Avari T, Carrington L, et al. Platelet function testing by aggregometry; Approved guideline. H58-A. 2008;28(31):1-45.
Hayward CPM, Moffat KA, Raby A, et al. Development of North American consensus guidelines for medical laboratories that perform and interpret platelet function testing using light transmission aggregometry. Am J Clin Pathol. 2010;134(6):955-63. PMid:21088160.
Cattaneo M, Cerletti C, Harrison P, et al. Recommendations for the standardization of light transmission aggregometry: A consensus of the working party from the platelet physiology subcommittee of SSC/ISTH. J Thromb Haemost. 2013. PMid:23574625.
Shattil SJ, Cunningham M, Hoxie JS. Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood. 1987; 70(1):307-15. PMid:3297204.
Huskens D, Sang Y, Konings J, et al. Standardization and reference ranges for whole blood platelet function measurements using a flow cytometric platelet activation test. PLoS One. 2018;13(2):e0192079. PMid:29389990 PMCid:PMC5794146.
van der Vorm LN, Li L, Huskens D, et al. Analytical characterization and reference interval of an enzyme-linked immunosorbent assay for active von Willebrand factor. PLoS One. 2019;14(2):e0211961. PMid:30759116 PMCid:PMC6373957.
Ding J, Zhang J, Li J, et al. Electrospun polymer biomaterials. Prog Polym Sci. 2019;90:1-34.
Xie X, Chen Y, Wang X, et al. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. J Mater Sci Technol. 2020;59:243-61.
Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11(8):1165-88.
Sergi R, Cannillo V, Boccaccini AR, Liverani L. A new generation of electrospun fibers containing bioactive glass particles for wound healing. Materials (Basel). 2020;13(24): 5651. PMid:33322335 PMCid:PMC7763513.
Garcia CEG, Bossard F, Rinaudo M. Electrospun biomaterials from chitosan blends applied as scaffold for tissue regeneration. Polymers (Basel). 2021;13(7):1037. PMid:33810406 PMCid:PMC8036406.
Zanchetta FC, Trinca RB, Gomes Silva JL, et al. Effects of electrospun fibrous membranes of poly-caprolactone and chitosan/poly(ethylene oxide) on mouse acute skin lesions. Polymers (Basel). 2020;12(7):1580. PMid:32708645 PMCid:PMC7408160.
Heemskerk JWM, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost. 2002;88(2):186-93. PMid:12195687.
Krystin K, Preuße P, Warkentin TE, Trabhardt C, Brandt S, Jensch I, et al. Fibronectin modulates formation of PF4/heparin complexes and is a potential factor for reducing risk of developing HIT. Blood. 2019;133(9):978-89. PMid: 30573633.
Adam C, Husseinzadeh H, Lebedeva T, Marturano JE, Massefski W, Lowery TJ, et al. Rapid evaluation of platelet function with T2 magnetic resonance. Am J Clin Pathol. 2016;146(6):681-93. PMid:28028118 PMCid:PMC5225753.
Volodymy D., Sulaieva O, Pernakov M, Korniienko V, Husak Y, Yanovska A, et al. Hemostatic and tissue regeneration performance of novel electrospun chitosan-based materials. Biomedicines. 2021;9(6):588. PMid:34064090 PMCid: PMC8224387.
Asten Van I, Blaauwgeers M, Granneman L, Heijnen HFG, Kruip MJHA, Beckers EAM, et al. Flow cytometric mepacrine fluorescence can be used for the exclusion of platelet dense granule deficiency. J Thromb Haemost. 2020;18(3):706-13. PMid:31815339 PMCid: PMC7065135.
Zhang D, Hu Z, Zhang L, Lu S, Liang F, Li S. Chitosan-based thermo-sensitive hydrogel loading oyster peptides for hemostasis application. Materials. 2020 9;13(21):5038. PMid:33182319 PMCid:PMC7664874.
Kagkelaris K, Panayiotakopoulos G, Georgakopoulos CD. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther Adv Ophthalmol. 2022;14: 25158414221112356. PMid:35873277 PMCid:PMC9301101.
Huskens D, Li L, Florin L, de Kesel P, de Laat B, Roest M, Devreese KMJ. Flow cytometric analysis of platelet function to improve the recognition of thrombocytopathy. Thrombosis Res, 2020;194:183-9.
Ranucci M, Laddomada T, Ranucci M, Baryshnikova E. Blood viscosity during coagulation at different shear rates. Physiol Rep. 2014;2(7):e12065. PMid:24994896 PMCid:PMC4187573.
Bock PE, Srinivasan K, Shore JD. Activation of intrinsic blood coagulation by ellagic acid: Insoluble ellagic acid-metal ion complexes are the activating species. Biochemistry. 1981;20(25):7258-66. PMid:6797471.
Miyazawa K, Fogelson AL, Leiderman K. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys J. 2023;3;122(1):99-113. PMid:36403087.
Nielsen VG, Geary BT, Baird MS. Evaluation of the contribution of platelets to clot strength by thromboelastography in rabbits: The role of tissue factor and cytochalasin D. AnesthAnalg. 2000;91(1):35-9. PMid:10866883.
Ganter MT, Hofer CK. Coagulation monitoring: Current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anest Analg. 2008;106(5):1366-75. PMid:18420846.
Harris LF, Castro-López V, Killard AJ. Coagulation monitoring devices: Past, present, and future at the point of care. TrAC Trends Analyt Chem. 2013;50:85-95.
Jones CG, Pechauer SM, Curtis BR, Bougie DW, Aster RH, Padmanabhan A. Normal plasma IgG inhibits HIT antibody-mediated platelet activation: Implications for therapeutic plasma exchange. Blood. 2018;131(6):703-6. PMid:29259003 PMCid:PMC5805490.
Selleng S, Selleng K, Wollert HG, et al. Heparin-induced thrombocytopenia in patients requiring prolonged intensive care unit treatment after cardiopulmonary bypass. J Thromb Haemost. 2008;6(3):428-35. PMid:18088340.
Mumford AD, Frelinger A, Gachet C, et al. A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb Haemost. 2015;113:1-12. PMid:25879272.
Moenen F, Nelemans PJ, Schols SEM, et al. The diagnostic accuracy of bleeding assessment tools for the identification of patients with mild bleeding disorders: A systematic review. Haemophilia. 2018;24(4):525-35. PMid:29873431.
Bian J, Bao L, Gao X, et al. Bacteria-engineered porous sponge for hemostasis and vascularization. J Nanobiotechnol. 2022;20:47. PMid:35062972 PMCid:PMC8780714.
Neun BW, Ilinskaya AN, Dobrovolskaia MA. Analysis of complement activation by nanoparticles. Methods Mol Biol. 2018;1682:149-60. PMid:29039100.
Kapur NK, Shenoy C, Yunis AA, et al. Distinct effects of unfractionated heparin versus bivalirudin on circulating angiogenic peptides. PLoS One. 2012;7(4):e34344. PMid:22509290 PMCid:PMC3324508.
Journals System - logo
Scroll to top